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The role of wave propagation in hydrocyclone operations I:
An axisymmetric streamfunction formulation

for a conical hydrocyclone
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Abstract

The objective of this work is to study the role of some wavelike motion observed in the interior of a conical hydrocyclone used in mineral
processing operations. In this paper, we obtained a stable numerical solution of the equations of motion, using a streamfunction-vorticity
formulation on non-structured mesh. The numerical solution is obtained in a finite element context, where a stabilization is imposed through
an unusual finite element method (USFEM) scheme. Finally, an adaptive mesh refinement is used for to enhance the solution.
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. Introduction

Hydrocyclones are used widely in the chemical, mineral
nd powder-processing industries. They consist of a cylin-
rical section followed by a conical section, a central upper
verflow tube (vortex finder) and a central lower discharge
ube (apex). A suspension is introduced tangentially at the
op of the cylindrical section causing a confined turbulent
wirling motion with recirculation. In this centrifugal field,
oarse and heavy particles move toward the wall and leave
he hydrocyclone at the upper region, while the lighter leave
hrough the apex.

The global behavior of the flow inside on a conical hy-
rocyclone is well known Kelsall[6] and several analytical
nd CFD calculation, for example, Bloor and Ingham[1] and
avidson[4], as well as laser Doppler measurement, Raja-
ani and Milin[13], have been done. The velocity profiles

how that the intensity of the turbulent motion is maximum
ear the air core and walls and diminishes to the interior of

he hydrocyclone.
In the operation of conical hydrocyclones, an outstanding

of the air core, especially in the apex region during the t
sition between spray and roping. The air core is not stat
shown by tomographic measurement (Williams et al.[14]),
and some capillary waves on the free surface exist as
gested by Dyakowski et al.[5]. Furthermore, some expe
mental evidence of the degradation of classification effici
by instabilities has been reported by Luo et al.[11]. The ob-
jective of this study is to analyze the effect of the presen
waves (at the air core and in the interior of a hydrocyclone
the classification action of the hydrocyclone and on the i
ation of roping. Toward this goal, we combine laser Dop
anemometry measurements with numerical computatio

The work is organized in two parts. The first part, co
sponding to this paper, is the solution of the Navier–St
equations in a hydrocyclone using a streamfunction-vort
formulation in a finite element scheme. We apply an unu
FEM scheme, due to Franca and Valentin[7], for the treat
ment of numerical instabilities produced by the equation
motion in the form of convection–diffusion equations. T
solution is enhanced by the use of adaptive meshes
second part of the presented paper deals with the an
eature is the undulatory and sometimes pulsating character

∗ Corresponding author.

of the wave propagation at the air–water interface of a
hydrocyclone and the study of the effect of the waves in the
hydrocyclone performance.
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Nomenclature

Ch finite element partition ofΩ
p pressure
Pe Peclet number
r radial coordinate
Re Reynolds number
u radial velocity
v tangential velocity
w axial velocity
z axial coordinate

Greek letters
β reduced vorticity
Γ circulation
η vorticity
ν laminar viscosity
Ω domain
ψ stream function

2. The model

The flow of a hydrocyclone is assumed to have axisym-
metrical character of the velocity field (except in the entrance
region); therefore, we use cylindrical coordinates (r, φ, z),
where the velocity field isv ≡ (u, v,w) and the pressure is
p. The continuity and Navier–Stokes equations are

∇ · v = 0 (1)

Dv

Dt
= −1

ρ
∇p+ ν∇2v (2)

Since the flow is two-dimensional, it is convenient to use a
streamfunction-vorticity formulation instead of equation(2)

Dw

Dt
= w · ∇v + ν∇2w (3)

where the components of the vorticity vectorw = ∇ × v ≡
(ξ, η, ζ) are

ξ = −∂v
∂z

; η = ∂u

∂z
− ∂w

∂r
; ζ = 1

r

∂

∂r
(rv) (4)

Then, in terms of components, equation(3) is given by

[ ( ) ]

If the velocities are expressed in terms of the streamfunction,
ψ, such thatu = −1

r
∂ψ
∂z

andw = 1
r
∂ψ
∂r

, equation(6) is

∂η

∂t
= 1

r3

∂Γ 2

∂z
+ uη

r
− u∂η

∂r
− w∂η

∂z

+ ν
[
∂

∂r

(
1

r

∂

∂r
(rη)

)
+ ∂2η

∂z2

]
(8)

andv component of equation(1) can be written in terms of
the circulation,Γ = vr, as

∂Γ

∂t
= −u∂Γ

∂r
− w∂Γ

∂z
+ ν

[
r
∂

∂r

(
1

r

∂Γ

∂r

)
+ ∂2Γ

∂z2

]
(9)

with η given by

η = − ∂

∂r

(
1

r

∂ψ

∂r

)
− 1

r

∂2ψ

∂z2
(10)

The Reynolds number,Re, can be related to the viscosity
in terms of the mean entrance velocitȳU0 and the hydrocy-
clone radius̄Rc. We introduce some normalization constants;
Hsieh[10] defined, in terms of the old (barred) and new di-
mensionless variables (non-barred), byt = t̄/(R̄c/Ū0), r =
r

η

Γ n be
e
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Dξ

Dt
= ξ ∂u

∂r
− vη

r
+ ζ ∂u

∂z
+ ν ∂

∂r

1

r

∂

∂r
(rξ) + ∂2ξ

∂z2
(5)

Dη

Dt
= ξ ∂v

∂r
− uη

r
+ ζ ∂v

∂z
+ ν

[
∂

∂r

(
1

r

∂

∂r
(rη)

)
+ ∂2η

∂z2

]
(6)

Dζ

Dt
= ξ ∂w

∂r
+ ζ ∂w

∂z
+ ν

(
∂2ζ

∂r2
+ 1

r

∂ζ

∂r
+ ∂2ξ

∂z2

)
(7)
/̄R̄c, z = z̄/R̄c, u = ū/Ū0, Γ = Γ̄ /(Ū0R̄c), w = w̄/Ū0,
= η̄/(Ū0/R̄c),ψ = ψ̄/(R̄2

cŪ0), the new equations forη and
conserve the same form, but now the viscosity ca

xpressed in terms of the Reynolds numberν≡ 1/Re with
e = R̄cŪ0/ν̄.
It is possible to write equation(8) for η in the form of

onvection–diffusion equation also, if we use the new v
bleβ =η/r. Then,

∂β

∂t
+ u∂β

∂r
+ w∂β

∂z

= ν
[

1

r

∂

∂r

(
r
∂β

∂r

)
+ 2

r

∂β

∂r
+ ∂2β

∂z2

]
+ ∂

∂z

(
Γ 2

r4

)
(11)

In general, equations that include convection terms
ifficult for solve. It is well known, for example, that f
ν

|v|h 
 O (1), the standard numerical methods (central fi
ifference scheme and Galerkin formulation) lose stab
anifested by large node-to-node fluctuations in the app

mate solutions.
A great deal of mathematical and scientific research

een devoted to rectifying this problem. These methods
rally try to remain true to the governing equations while
ultaneously providing numerical stability to the soluti
ne of the simplest (yet effective) methods for obtain

tability is by the addition of artificial diffusion througho
he domain of the problem. In the next section, we pre

finite element solution forη and β, using a stabilize
ethod.
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3. The finite element solution

3.1. The numerical scheme

In comparison to the numerical solution to the equations
of motion obtained by Hsieh and Rajamani[9], which uses a
finite difference scheme, in this work, we present a solution
using a finite element formulation. In an FEM formulation,
the application of boundary conditions and the utilization of
more complex non-structured grids are advantageous.

When using standard Galerkin methods, the convec-
tion–diffusion equation is difficult to solve for high Peclet
numbers (see equation(28)). Strong oscillations occur in
regions of higher gradient of the hydrodynamical fields. In
order to improve the Galerkin solution, two successful sta-
bilized methods have been used: the streamline upwinding
Petrov Galerkin (SUPG) methods[3] and the residual-free-
bubbles methods[8]. In particular, the SUPG method adds
numerical diffusion along the streamline direction, damping
the oscillations.

In this paper, we will use the unusual finite element method
(USFEM) technique on triangular grids[7], since it produces
less diffusion that the standard SUPG methods. This tech-
nique combines the residual-free-bubbles methods with stan-
dard Petrov Galerkin methods. Before applying the FEM to
solve the equations, it is necessary to transform the equa-
t al-
t rob-
l ntial
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In our case, the two convection–diffusion models consid-
ered can be written as the following boundary value problem:

∂Γ

∂t
+ a · ∇Γ − ν

(
∇2Γ − 1

r

∂Γ

∂r

)
= 0 inΩ (15)

∂β

∂t
+ a · ∇β − ν

(
∇2β − 3

r

∂β

∂r

)
= f (β) inΩ (16)

wherea ≡ (u,w) is the given velocity field,∇ ≡
(
∂
∂r
, ∂
∂z

)
and∇2 ≡

(
∂2

∂r2
, ∂

2

∂z2

)
are gradient and Laplacian Cartesian

operators. Furthermore, the source term of(16) is f (β) ≡
∂
∂z

(
Γ 2

r4

)
. For the treatment of the variational form of these

equations, it is necessary to work with an internal product
defined by

(u, v) ≡
∫
Ω

uvdΩ (17)

with dΩ= r dr dz that corresponds to an internal product in
cylindrical coordinates. Consider a spaceH1

0(Ω) of contin-
uous functions with continuous first derivative in a bounded
domainΩ⊂ R2 and null Neumann conditions at the bound-
ary∂Ω. The variational formulation corresponding to(15)is:
find u∈H1

0(Ω), such that∀v∈H1
0(Ω)

(

( )

S

(

T finite
d -
i

(

a

I e lin-
e tions
w sion
t
l itten
a

(

ions into more suitable forms. To do that, there are two
ernatives: one can derive an equivalent minimization p
em, which has exactly the same solution as the differe
quation, or one can derive a so-called weak formula
riginally, the weak formulation was introduced by mat
aticians to investigate the behavior of the solution of pa
ifferential equations, and to prove existence and unique
f the solution. Later on, numerical schemes were base

his formulation, which lead to an approximate solution
onstructive way.

Consider a differential operator,L, andCh, a finite elemen
artition ofΩ, made up with three nodes triangles. If we w

he differential equation in the form

u = f, (12)

e replace the variational for (Lu, v) = (f, v) by the stabi
ized formulation

Lu, v) −
∑
K ∈Ch

(Lu, τL†v)K = (f, v) −
∑
K ∈Ch

(f, τL†v)K

(13)

hereL† is a discrete adjunct operator toL, (·,·)K is a discrete
nner product that, in the continuous version, is

Lu, v) =
∫
Ω

L(u)vdΩ =
∫
Ω

uL†(v) dΩ = (u,L†v) (14)

ndτ is a parameter depending on the elementK of Ch and
ome local Peclet number. In(14), the terms that produc
he stabilization contain functions that belong to the disc
paceVh ⊂ H1

0(Ω).
u̇, v) + (a · ∇u, v) − ν(∇2u, v) + ν 1

r

∂u

∂r
, v = 0 (18)

imilarly, for(16)it is: findu∈H1
0(Ω), such that∀v∈H1

0(Ω)

u̇, v) + (a · ∇u, v) − ν(∇2u, v) − 3ν

(
1

r

∂u

∂r
, v

)
= (f (β), v)

(19)

he standard Galerkin method consists in choosing a
imensional sub-space,Vh ⊂ H1

0(Ω), and solving the follow
ng: for Γ , find uh ∈ Vh, such that∀vh ∈Vh(Ω)

u̇h, vh) + (a · ∇uh, vh) − ν(∇2uh, vh) − ν
(

1

r

∂uh

∂r
, vh

)
= 0

(20)

nd forβ, find uh ∈ Vh, such that∀vh ∈Vh(Ω)

(u̇h, vh) + (a · ∇uh, vh) − ν(∇2uh, vh) − 3ν

(
1

r

∂uh

∂r
, vh

)

= (f (β), vh) (21)

t is well known that for a subspace spanned by piecewis
ar elements, these formulations yield poor approxima
henν
 |a|. In this paper, we propose to apply an exten

o the unusual stabilized method introduced in[7] to prob-
ems in cylindrical coordinates. The method can be wr
s:

For the equation forΓ : find uh ∈ Vh, such that

u̇h, vh) + B(uh, vh) = 0, ∀vh ∈Vh (22)
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where

B(u, v) = (a · ∇u, v) + ν(∇u,∇v) + 2ν

(
1

r

∂u

∂r
, v

)

+
∑
K ∈Ch

(
a · ∇u− ν u+ ν

r

∂u

∂r
, τK

×
(

a · ∇v+ ν v+ 3ν

r

∂v

∂r
+ arv

r

))
K

(23)

and for the equation forβ: find uh ∈ Vh, such that

(u̇h, vh) + B(uh, vh) = F (vh), ∀vh ∈Vh (24)

where

B(u, v) = (a · ∇u, v) + ν(∇u,∇v) − 2ν

(
1

r

∂u

∂r
, v

)

+
∑
K ∈Ch

(
a · ∇u+ ν u− 3ν

r

∂u

∂r
, τK

×
(

a · ∇v+ ν v− ν

r

∂v

∂r
+ arv

r

))
K

(25)

and

F (v) = (f (β), v) +
∑ (

f (β), τK

(
a · ∇v+ ν v− v

r

∂v

∂r
+ arv

r

))
(26)

sen
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w

P
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(

3
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i

the equation that we want to solve has the general form

[A]φ̇ + [B]φ = [F ] (32)

then, the solution is

φt+ t = ([A] + t[B])−1([A]φt + [F ] t) (33)

4. The boundary conditions

4.1. Inlet

Sinceψ is not a function ofv at the inlet region, we assign
a turbulent velocity profile represented by a constant function

uin = − 1

rin

∂ψ

∂z
(34)

Integrating this function, we obtain a profile for the stream-
function atr = r in. While the velocity profile is axisymmetric
with respect toz0, ψ is antisymmetric. The inlet flow is pro-
portional to the difference of the extreme values ofψ over
the inlet region. We can set a constant value ofψ over the

t
ψ ntle
o

of
t
c at
t

c-
i
w in-
s oxi-
m -
s -
d l
s by
v plit
i nent
i s

w

4

set
t e of
ψ l
w the
v

K ∈Ch

As is shown in[7], the stability parameter can be cho
s

K = h2
K

6v max{PeK(x),1} (27)

here

eK(x) = 3|a(x)|2hK
ν

(28)

a(x)| =
(
N∑
i=1

|ai(x)|2
)1/2

(29)

he formula forτK has a form that is suggested by st
ondensation, as explained in[8].

We finalize this section by writing a variational form
heψ equation given in(10), but now in terms of the reduc
orticity β

r2 = −∂
2ψ

∂r2
− ∂2ψ

∂z2
+ 1

r

∂ψ

∂r
(30)

n the variational form: forβ andψ, find vh ∈H1
0, such that

βr2, v) = (∇ψ,∇v) + 2

(
1

r

∂ψ

∂r
, v

)
(31)

.2. The integration in time

For integration in time, we use the implicit scheme bec
t is unconditionally stable scheme. If for an arbitrary fieldφ,
K

otal upper wall of hydrocycloneψb =ψ(r in, z2). Similarly,
a =ψ(r in, z1) over the walls that contains the conical ma
f the hydrocyclone.

Since the vorticity can be calculated explicitly in term
he velocities,u andw, in the formη = ∂u/∂z− ∂w/∂r, the
alculation ofη in the inlet region is direct if we suppose th
he tangential velocity,w, has no radial component.

The circulation,Γ , is proportional to the tangential velo
ty v; therefore, it can be defined in the formΓin = vin/R,
herevin represents the tangential velocity field induced
ide the hydrocyclone. Writing the axisymmetric appr
ation, we can calculatevin. In the following form, we as

ume that a volume flowQin = Qo + Qu is fed into the hy
rocyclone through a pipe of radius,Rin, with a transversa
ection,Ain = πR2

in. Then, the velocity modulus is given
s ≡ |v| = Qin/Ain, and the entrance velocity can be s
nto radial and tangential components. The radial compo
s calculated asuin = Qin/(2πr in z), while the tangential i

in =
√
v2

s − u2
in.

.2. Walls

At the wall in the top section of the hydrocyclone, we
he values of the streamline function to the constant valu

b =ψ(r in, z2). Similarly, we setψa =ψ(r in, z1) at the conica
all. The vorticity can be calculated explicitly in terms of
elocities,u andw, in the formη = ∂u/∂z− ∂w/∂r. Finally,
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the circulation we can be writtenΓwall = kvin/r, wherek is
a constant factor. This fact is supported by the experimental
evidence that the tangential velocity is not zero near the walls.

4.3. Free surface

The free surface has a behavior similar to a wall except free
slip occurs, because there is no significant friction between
the liquid and gas phases at the interface. Therefore,ψ can be
considered constant at the free surface, sayψfs. This constant
has a value between that of the walls that limit the inlet region,
ψo ≤ψfs ≤ψu·ψo is the value ofψu over the upper section of
the hydrocyclone andψo is the value on the cylindrical and
conical walls. The exact value ofψfs will depend, of course,
on the flow splitf ≡ Qo/Qu, whereQo andQu are the overflow
and underflow volume rates. The difference in the values of
ψ on two different streamlines is equal to the volume rate of
fluid between them (divided by 2π in the cylindrical case).
Then,

f = ψo − ψfs

ψfs − ψu
(35)

Since the free surface is like a wall, the tangential velocity is
not zero and we can writeΓfs = kvin/r in the same form as
was discussed before.
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ψ

5. Results

The computational flow diagram used can be described in
the following steps: at timet = t0, the variable,ψ, is fixed in the
Dirichlet boundaries and then are solved assuming that they
satisfy Laplace’s equation. We need a smooth fieldψ for the
calculations of the velocities,u andw. Now, we calculate the
new values of the reduced vorticity,β, and the circulation,
Γ , using the evolution equations(22) and (24) for a time
t = t0 + t. Then, we recalculate the streamfunction,ψ, using
(31), the velocity fieldsu andw, and the new values for the
boundaries ofβ. The cycle is repeated fort = t + t until the
fields do not change significantly in time.

Our calculations were based on a hydrocyclone with di-
mensions equal to those used by Rajamani and co-workers
[12], which are given inTable 1. In general, the solution
reproduces observations seen in the experiments for the ve-
locity fields, as well as the recirculation near the entrance
zone. The locus of zero axial velocity is also shown to occur.
Strictly, it is not possible to obtain a numerical solution with
only one computational run, because the outlets’ areas and
the split ratio of the flow for a given feed area are not known
in advance. A series of calculations is needed to choose a so-
lution that takes some functional to an extreme, for example,
the total pressure drop.Fig. 1 shows a comparison between
the measurement by Rajamani and co-workers[12] and one
o eas
g

eld,
s sical
o
t inar
fl rally
t rm,
t , it
i nner
r d by
u randtl
m he

T
H

D

O

O

.4. Outlets

At the outlet regions (over and underflow), we impose
sual boundary condition of constant fields in the ˆn direction,

hat is∂ψ
∂n

= 0, ∂η
∂n

= 0 and∂Γ
∂n

= 0, wheren is the normal uni
ector at the outlet surfaces. The choice is consistent wit
ore general boundary conditions applied for the velo

elds ∂u
∂z

= −1
r
∂2ψ

∂z2
and∂w

∂n
= 1
r
∂2ψ
∂z ∂r

= 0, if ∂ψ
∂n

= ∂ψ
∂z

= 0. In
his formulation, the boundary conditions on outlet reg
re null Neumann boundary conditions and the super

ntegrals are zero.

.5. Dirichlet boundaries

In general, the Dirichlet boundary conditions can be
lied as follows: suppose that we need to solve an equ
f the form [A]{ψ}={B}, where [A] is a n× n matrix and
ψ} with {B} are vectors ofn× 1 dimension. Ifψ is known
ver m nodes belonging to the contourΓ , but not over th
− m belonging toΩ̃ ≡ Ω− Γ , we can split the vectori
pace forψ, into two disjoint subspacesψΓ andψΩ̃ in the
orm

AΓΓ AΓΩ̃

AΩ̃Γ AΩ̃Ω̃

]{
ψΓ

ψΩ̃

}
=
{
BΓ

BΩ̃

}
(36)

nd the solution forψΩ̃ is given by

Ω̃ = A−1
Ω̃Ω̃

(BΩ̃ − AΩ̃ΓψΩ̃). (37)
f our calculations for the flow split and for the outlet ar
iven inTable 1, and the tangential velocity profile.

When a stabilization scheme is not applied, some fi
uch as the vorticity and the velocities, present non-phy
scillations. This occurs for the streamfunction (seeFig. 2for

he results obtained with and without stabilization). If lam
ow is solved, the calculated tangential velocity has gene
he form, of a free vortex. To reproduce the Rankine fo
ypical of the tangential velocity field in a hydrocyclone
s necessary to introduce an additional viscosity at the i
egion of hydrocyclone, near the air core. This is achieve
sing a turbulence model. In our case, we use a simple P
ixed-length model, designed specially for the flow in

able 1
ydrocyclone Krebs

imension (mm)
Diameter hydrocyclone 75.00
Longitude cylindrical region 75.00
Feed diameter 25.00
Vortex finder length 50.00
Cylindrical section length 75.00
Conical section length 185.0
Spigot diameter 12.5

peration variables (kg/min)
Feed flux 67.00
Underflow 14.34

utlet areas (m−3)
Overflow 4.4× 10−3

Underflow 9.44× 10−5
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Fig. 1. Tangential velocity profile at levelz= 50 mm from top in Ref.[12].
Each symbol corresponds to different operating conditions given in Table 2
in the paper. The operating condition chosen is shown with the symbol (�)
(case 2 in paper). The line corresponds to the calculated profile in the present
work.

hydrocyclone (Hsieh and Rajamani[9]). If µ is the dynamic
viscosity of the fluid, this model adds a turbulent viscosity
µt, expressed in terms both the gradients of velocity fields
and of an empirical modulation induced by the geometry of
the hydrocyclone.

µt = K(Rc, ρ, λ(z, r), µ0)

(∣∣∣∣1r ∂Γ∂r − 2Γ

r2

∣∣∣∣+
∣∣∣∣∂w∂r

∣∣∣∣
)

(38)

In (38), Rc is the hydrocyclone radio,ρ the density,µ0 the
fluid viscosity andλ(z, r) is defined as an empirical function.
In our case, we useK = 5× 10−4. The calculations were made
in Matlab, and a mesh generator BL2D[2] was used for the
construction of an adaptive mesh.Fig. 3 shows the initial
and final meshes used. The last mesh contains 1109 points
and 1987 triangles. The time step used was 0.0025 s and the
resulting Reynolds number wasRe= 8.53× 104.

e.

Fig. 3. Initial and adapted meshes.

6. Conclusions

A stabilized solution for the equations of motion that gov-
ern the dynamics of a conical hydrocyclone has been devel-
oped, using a USFEM scheme in a finite element formulation.
The advantages over finite differences formulations are in the
application of boundary conditions (especially in the outlet
regions) and in the use of non-structured meshes that permits
the generation of adaptive meshes to enhance the solution in
zones where there is a greater change in the field.

The presented stabilized method achieves a numerical so-
lution even in the case when we use a laminar viscosity. In
this case, a free-vortex profile for the tangential velocity is ob-
tained. The adjustment of the experimental form of a Rankine
profile is obtained through a turbulence model. In particular,
a simple Prandtl turbulence model is sufficient to obtain a
good solution in a triangular mesh.
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