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Abstract

The objective of this work is to study the role of some wavelike motion observed in the interior of a conical hydrocyclone used in mineral
processing operations. In this paper, we obtained a stable numerical solution of the equations of motion, using a streamfunction-vorticity
formulation on non-structured mesh. The numerical solution is obtained in a finite element context, where a stabilization is imposed through
an unusual finite element method (USFEM) scheme. Finally, an adaptive mesh refinement is used for to enhance the solution.
© 2005 Published by Elsevier B.V.
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1. Introduction of the air core, especially in the apex region during the tran-
sition between spray and roping. The air core is not static as

Hydrocyclones are used widely in the chemical, mineral shown by tomographic measurement (Williams e{#]),

and powder-processing industries. They consist of a cylin- and some capillary waves on the free surface exist as sug-

drical section followed by a conical section, a central upper gested by Dyakowski et aJ5]. Furthermore, some experi-

overflow tube (vortex finder) and a central lower discharge mental evidence of the degradation of classification efficiency

tube (apex). A suspension is introduced tangentially at the by instabilities has been reported by Luo efal]. The ob-

top of the cylindrical section causing a confined turbulent jective of this study is to analyze the effect of the presence of

swirling motion with recirculation. In this centrifugal field, —waves (atthe air core and in the interior of a hydrocyclone) on

coarse and heavy particles move toward the wall and leavethe classification action of the hydrocyclone and on the initi-

the hydrocyclone at the upper region, while the lighter leave ation of roping. Toward this goal, we combine laser Doppler

through the apex. anemometry measurements with numerical computations.
The global behavior of the flow inside on a conical hy- The work is organized in two parts. The first part, corre-

drocyclone is well known Kelsa[B] and several analytical  sponding to this paper, is the solution of the Navier—Stokes

and CFD calculation, for example, Bloor and Ingh@hand equations in a hydrocyclone using a streamfunction-vorticity

Davidson[4], as well as laser Doppler measurement, Raja- formulation in a finite element scheme. We apply an unusual
mani and Milin[13], have been done. The velocity profiles FEM scheme, due to Franca and Valerfi, for the treat-
show that the intensity of the turbulent motion is maximum ment of numerical instabilities produced by the equations of
near the air core and walls and diminishes to the interior of motion in the form of convection—diffusion equations. The
the hydrocyclone. solution is enhanced by the use of adaptive meshes. The

In the operation of conical hydrocyclones, an outstanding second part of the presented paper deals with the analysis
feature is the undulatory and sometimes pulsating characterof the wave propagation at the air—water interface of a

hydrocyclone and the study of the effect of the waves in the
* Corresponding author. hydrocyclone performance.
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Nomenclature

Ch finite element partition of2
p pressure
Pe Peclet number
r radial coordinate
Re Reynolds number
u radial velocity
v tangential velocity
w axial velocity
z axial coordinate
Greek letters
B reduced vorticity
r circulation
n vorticity
v laminar viscosity
2 domain
v stream function

2. The model

The flow of a hydrocyclone is assumed to have axisym-
metrical character of the velocity field (except in the entrance
region); therefore, we use cylindrical coordinatesd, 2),
where the velocity field i = (u, v, w) and the pressure is
p. The continuity and Navier—Stokes equations are

V-v=0 D)
Dv 1 5

— =-ZvV v 2
Dr ’ p+vVa (2)

Since the flow is two-dimensional, it is convenient to use a
streamfunction-vorticity formulation instead of equat{@)

Dw 2
—=w-V \Y 3
D w-Vv+vVw 3)
where the components of the vorticity vector=V x v =
(& 1n,¢) are
ov ou ow
§ 0z 0z ar r 8r(rv) )

Then, in terms of components, equat({@is given by
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If the velocities are expressed in terms of the streamfunction,
¥, such that = — 2% andw = 13%, equation(6) is

ror?

on 10I%  upy on 8n
-
a3 oz r or 8Z
9 (19 9%y
— | -= — 8
Y {Br (r Br(rn)> + Bzz} ®

andv component of equatiofl) can be written in terms of
the circulation,]” = vr, as

or ar ar 9 [/1ar N a2r ©)
e I i TR PR il g
ot “or 8z ar \ r or 972
with n given by
d [1dy 1%y
_ _-’ 7 10
g Cor (r Br) r 9z2 (10)

The Reynolds numbeReg can be related to the viscosity
in terms of the mean entrance velocliiy and the hydrocy-
clone radiusk.. We introduce some normalization constants;
Hsieh[10] defined, in terms of the old (barred) and new di-
mensionless variables (non-barred), foy ; 1/(Rc/Uo), r=
r/Rc, z_—zLRC, u=u/Uy, I =T/(UoRc), w= w/Uo,
n = n/(Uo/Rqc), ¥ = ¥/(R2Up), the new equations farand
I" conserve the same form, but now the viscosity can be
expressed in terms of the Reynolds number 1/Re with
Re = R:.Uy/v.

It is possible to write equatio(B) for n in the form of
convection—diffusion equation also, if we use the new vari-
ableg=nlr. Then,

B, B, P

54_ 3r+ a0z
B B 208 B 2
_v[rar(ar>+r8r 8Z]+az<r> (1)

In general, equations that include convection terms are
difficult for solve. It is well known, for example, that for
|v 7 << O (1), the standard numerical methods (central finite
difference scheme and Galerkin formulation) lose stability
manifested by large node-to-node fluctuations in the approx-
imate solutions.

A great deal of mathematical and scientific research has
been devoted to rectifying this problem. These methods gen-
erally try to remain true to the governing equations while si-
multaneously providing numerical stability to the solution.
One of the simplest (yet effective) methods for obtaining
stability is by the addition of artificial diffusion throughout
the domain of the problem. In the next section, we present
a finite element solution for, and B8, using a stabilized
method.
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3. The finite element solution In our case, the two convection—diffusion models consid-
ered can be written as the following boundary value problem:
3.1. The numerical scheme
ar+a-vr—v(vzr—lar):0in9 (15)
In comparison to the numerical solution to the equations 9¢ ror
of motion obtained by Hsieh and Rajam®ii, which uses a 8 308
finite difference scheme, in this work, we present a solution — +a-Vg —v (Vzﬁ — ) = fPing (16)
using a finite element formulation. In an FEM formulation, ror
the application of boundary conditions and the utilization of
more complex non-structured grids are advantageous. N o’ Bz
When using standard Galerkin methods, the convec- andV? = (% 3372) are gradient and Laplacian Cartesian
tion—diffusion equatiqn is difficult to solye for high Peglet operators. Furthérmore, the source term(18) is f(ﬂ) —
numbers (see equatigf28)). Strong oscillations occur in 3
regions of higher gradient of the hydrodynamical fields. In 3 \ r* o } i
order to improve the Galerkin solution, two successful sta- €quations, it is necessary to work with an internal product
bilized methods have been used: the streamline upwindingdefined by
Petrov Galerkin (SUPG) methodt3] and the residual-free-
/ uv d2
2

wherea = (u, w) is the given velocity fieldy = ( 9 0 )

(‘;—42) For the treatment of the variational form of these

bubbles method8]. In particular, the SUPG method adds («,v) = (17)

numerical diffusion along the streamline direction, damping

the oscillations. with d$2=r dr dz that corresponds to an internal product in
Inthis paper, we will use the unusual finite element method cylindrical coordinates. Consider a spakig(s2) of contin-

(USFEM) technique on triangular grifig, since it produces  uous functions with continuous first derivative in a bounded

less diffusion that the standard SUPG methods. This tech-domains2 ¢ R? and null Neumann conditions at the bound-

nique combines the residual-free-bubbles methods with stan-ary 352. The variational formulation corresponding(fi®) s:

dard Petrov Galerkin methods. Before applying the FEM to find u € H}(£2), such thavv € H}(£2)

solve the equations, it is necessary to transform the equa-

tions into more suitable forms. To do that, there are two al- (j;, v) + (a - Vu, v) — v(V2u, v) + v <1&” U) =0 (18)

ternatives: one can derive an equivalent minimization prob- ror

lem, which has exactly the same solution as the differential

equation, or one can derive a so-called weak formulation.

Originally, the weak formulation was introduced by mathe- ) 1 du #

maticians to investigate the behavior of the solution of partial (i1, v) + (@ Vu, v) = v(V7u, v) = 3v (rar’ U) =" v)

differential equations, and to prove existence and uniqueness (19)

of the solution. Later on, numerical schemes were based on

this formulation, which lead to an approximate solution in a The standard Galerkin method consists in choosing a finite

constructive way. dimensional sub-spack, C H&(.Q), and solving the follow-
Consider a differential operatat, andC, afinite element  ing: for I, find un € Vi, such thawv, € Vi (£2)

partition of$2, made up with three nodes triangles. If we write

the differential equation in the form (ttn, vn) + (a - Vup, vp) — v(Vzuh, vh) — v <1auh, vh) =0
r
Lu=f (12) (20)

Similarly, for(16)itis: findu € H3(£2), suchthatv e H}($2)

we replace the variational forZ, v) = (f; v) by the stabi- and forg, find un € Vi, such thavvy € Vh(£2)
lized formulation

. 2 1 dunp
(Cuv) = 3 (Cutli)e = (f0) = . (£rLiv) (e ) + (@ - Vitn, vn) = (V7. vh) =3 <a ”h>
K eChp K eCp
(13) = (), vn) (21)
where£! is a discrete adjunct operator£o(-,-)k is a discrete Itis well known that for a subspace spanned by piecewise lin-
inner product that, in the continuous version, is ear elements, these formulations yield poor approximations

whenv « |a). In this paper, we propose to apply an extension
(Lu, v) = / L(u)vds$2 = / ull(v)de = (u, LTv) (14) to the unusual stabilized method introducedhto prob-
2 2

lems in cylindrical coordinates. The method can be written
andr is a parameter depending on the elentewif Cy, and as:

some local Peclet number. [{14), the terms that produce For the equation fof™: find un € Vi, such that
the stabilization contain functions that belong to the discrete
spaceV, C HE(£2). (ieh, vh) + B(uh, vn) =0, VYvhe Vh (22)



208
where

19
B(u,v) = (a- Vu, v) + v(Vu, Vv) + 2v <8u’ v)
ror

v ou
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3vad
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r or r K
and for the equation fgs: find u, € Vj, such that
(itn, vn) + B(un, vh) = F(vn), VYvhe Vy (24)
where
10
B(u,v) = (a- Vu, v) + v(Vu, Vv) — 2v (u, v)
ror
3v du
.V >
+ E (a u—+vAu rar’TK
K eCh
ad
X (wVv—i—vAv—vv—i—arv)) (25)
ror r K
and
— (B (B) v v
F(v)= (", v)+ E Ptk (a-Vo+vAav— —— +
ror

K e Ch

As is shown in[7], the stability parameter can be chosen
as

I
K= max{ Pek (x), 1} 27)
where
Peg(x) = 3'“("3'”‘ K (28)
N 1/2
la(x)| = (Z |a,-(x)|2> (29)
i=1

The formula forzk has a form that is suggested by static
condensation, as explained[B].

We finalize this section by writing a variational form for
they equation given irff10), but now in terms of the reduced
vorticity g

i

1oy
or2 972

7 or

pré = (30)

in the variational form: fo andy, find vy € H&, such that

(Br?, v) = (Vy, Vo) + 2 (13‘”, v)

r or (31)

3.2. The integration in time

7)),
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the equation that we want to solve has the general form

[Al¢ + [Blg = [F] (32)
then, the solution is
¢+ = ([A] + A[B) X[ Al¢' + [F] AY) (33)

4. The boundary conditions
4.1. Inlet

Sincey is not a function ob at the inlet region, we assign
aturbulent velocity profile represented by a constant function
1oy

Up = ———

34
rin 0z ( )

Integrating this function, we obtain a profile for the stream-
function atr =rj,. While the velocity profile is axisymmetric
with respect tay, ¥ is antisymmetric. The inlet flow is pro-
portional to the difference of the extreme valuesjobver
the inlet region. We can set a constant valugjobver the

(26)

total upper wall of hydrocyclongp = (rin, z2). Similarly,
Ya=v(rin, 21) over the walls that contains the conical mantle
of the hydrocyclone.

Since the vorticity can be calculated explicitly in term of
the velocitiespy andw, in the formn = ou/dz — dw/ar, the
calculation ofy in the inlet region is direct if we suppose that
the tangential velocityyw, has no radial component.

The circulation[”, is proportional to the tangential veloc-
ity v; therefore, it can be defined in the forfy = vin/R,
whereuj, represents the tangential velocity field induced in-
side the hydrocyclone. Writing the axisymmetric approxi-
mation, we can calculatay. In the following form, we as-
sume that a volume flov@i, =Q, + Qy is fed into the hy-
drocyclone through a pipe of radiugy,, with a transversal
section,Ajp = nR%. Then, the velocity modulus is given by
vs = |v| = Qin/Ain, and the entrance velocity can be split
into radial and tangential components. The radial component
is calculated asin = Qin/(2r7rin Az), while the tangential is

2

win = 1/vZ — uf,.

4.2. Walls
At the wall in the top section of the hydrocyclone, we set

the values of the streamline function to the constant value of
Y=Y (rin, 22). Similarly, we setya = ¥ (rin, 1) at the conical

Forintegrationintime, we use the implicit scheme because wall. The vorticity can be calculated explicitly in terms of the

itis unconditionally stable scheme. If for an arbitrary figld

velocities,u andw, in the formn = du/dz — dw/or. Finally,
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the circulation we can be writteRya = kvin/r, Wherek is 5. Results

a constant factor. This fact is supported by the experimental

evidence that the tangential velocity is not zero nearthe walls.  The computational flow diagram used can be described in
the following steps: at time=tg, the variabley, is fixed in the

4.3. Free surface Dirichlet boundaries and then are solved assuming that they
satisfy Laplace’s equation. We need a smooth fiefdr the

The free surface has a behavior Sim“ar to awa” except free calculations of the Ve|OCitieH,andw. NOW, we calculate the
slip occurs, because there is no significant friction between New values of the reduced vorticitg, and the circulation,
the liquid and gas phases at the interface. Therefooanbe '+ using the evolution equation(@2) and (24) for a time
considered constant at the free surface ysayThis constant ~ t=to+ At. Then, we recalculate the streamfunctignusing
has a value between that of the walls that limit the inlet region, (31), the velocity fieldsu andw, and the new values for the
Vo < Yts < Yu- Yo is the value ofjr, over the upper section of boundaries of5. The cycle is repeated fo=t+ At until the
the hydrocyclone ang, is the value on the cylindrical and ~ fields do not change significantly in time.
conical walls. The exact value gfs will depend, of course, Our calculations were based on a hydrocyclone with di-
on the flow splif = Qu/Qyu, whereQ, andQy are the overflow mensions equal to those used by Rajamani and co-workers
and underflow volume rates. The difference in the values of [12], which are given inTable 1 In general, the solution
¥ on two different streamlines is equal to the volume rate of reproduces observations seen in the experiments for the ve-
fluid between them (divided bys2in the cylindrical case). locity fields, as well as the recirculation near the entrance

Then, zone. The locus of zero axial velocity is also shown to occur.
Strictly, it is not possible to obtain a numerical solution with
f= Yo — ¥is (35) only one computational run, because the outlets’ areas and
Vts — Yu the split ratio of the flow for a given feed area are not known

in advance. A series of calculations is needed to choose a so-
lution that takes some functional to an extreme, for example,
the total pressure drofig. 1 shows a comparison between
the measurement by Rajamani and co-work&?$ and one
of our calculations for the flow split and for the outlet areas
given inTable 1 and the tangential velocity profile.

When a stabilization scheme is not applied, some field,
such as the vorticity and the velocities, present non-physical

o ~an ar ) ' oscillations. This occurs for the streamfunction (&g 2for

thatisy = 0,5 = 0andg; = O,wherenisthe normalunit ¢ regyyts obtained with and without stabilization). If laminar
vector at the outlet surfaces. The choice is consistent with theq, i solved, the calculated tangential velocity has generally
more general boundary conditions applied for the velocity q form, of a free vortex. To reproduce the Rankine form,
fields % = —%% and3? = %(?Zf,”, =0,if % = % =0.In typical of the tangential velocity field in a hydrocyclone, it
this formulation, the boundary conditions on outlet regions s necessary to introduce an additional viscosity at the inner
are null Neumann boundary conditions and the superficial region of hydrocyclone, near the air core. This is achieved by
integrals are zero. using aturbulence model. In our case, we use a simple Prandtl
mixed-length model, designed specially for the flow in he

Since the free surface is like a wall, the tangential velocity is
not zero and we can writ€s = kviy/r in the same form as
was discussed before.

4.4, Outlets

At the outlet regions (over and underflow), we impose the
usual boundary condition of constant fields in thairection,

4.5. Dirichlet boundaries

In general, the Dirichlet boundary conditions can be ap- Table 1
plied as follows: suppose that we need to solve an equation™ydrocyclone Krebs
of the form [A]{v} ={B}, where B] is a n x n matrix and Dimension (mm)

{¥} with {B} are vectors ofi x 1 dimension. Ify is known Diameter hydrocyclone 60
d bel . to th todit. but not th Longitude cylindrical region 750
overm nodes belonging to the contodl, but not over the Feed diameter 280
n—m belonging tof2 = 2 — I, we can split the vectorial Vortex finder length 5m0
space foryr, into two disjoint subspacegr andy g, in the Cylindrical section length 780
form Conical section length 185
Spigot diameter 13
Arr  Arg vr _ Br Operation variables (kg/min)
A A v " 1B (36) Feed flux 6700
er $22 $ $2 Underflow 1434
and the solution foty g, is given by Outlet areas (m°)
Overflow 44 %1078

Yo = Aéé(sz —Aprva). (37) Underflow 944x 1075
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Fig. 1. Tangential velocity profile at levek 50 mm from top in Ref[12].

Each symbol corresponds to different operating conditions given in Table 2
in the paper. The operating condition chosen is shown with the syrmbol (
(case 2in paper). The line corresponds to the calculated profile in the present
work.

Fig. 3. Initial and adapted meshes.
6. Conclusions

hydrocyclone (Hsieh and Rajamd#j). If « is the dynamic A stabilized solution for the equations of motion that gov-

viscosity of the fluid, this model adds a turbulent viscosity ern the dynamics of a conical hydrocyclone has been devel-
wt, expressed in terms both the gradients of velocity fields oped, usinga USFEM scheme in a finite element formulation.
and of an empirical modulation induced by the geometry of The advantages over finite differences formulations are in the

the hydrocyclone. application of boundary conditions (especially in the outlet
1or or 5 regions) and in the use of non-structured meshes that permits
w ) ) o
i = K(Re, p, Mz, ), o) ( S - ‘D (38) the generation of adaptive meshes to enhance the solution in
ror r ar zones where there is a greater change in the field.

The presented stabilized method achieves a numerical so-
lution even in the case when we use a laminar viscosity. In
this case, a free-vortex profile for the tangential velocity is ob-
tained. The adjustment of the experimental form of a Rankine
profile is obtained through a turbulence model. In particular,
a simple Prandtl turbulence model is sufficient to obtain a

ood solution in a triangular mesh.

In (38), R: is the hydrocyclone radiq the densityug the
fluid viscosity andi.(z, r) is defined as an empirical function.

In our case, we ug€=>5 x 104, The calculations were made

in Matlab, and a mesh generator BL22} was used for the
construction of an adaptive medhig. 3 shows the initial
and final meshes used. The last mesh contains 1109 point
and 1987 triangles. The time step used was 0.0025 s and th
resulting Reynolds number wie= 8.53x 10%.
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